Matrix Inverse

Linear Algebra

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Left Inverse

Left Inverse

Definition

A number x that satisfies $x a=1$ is called the inverse of a
Inverse (i.e., $\frac{1}{a}$) exists if and only if $a \neq 0$, and is unique
\square A matrix X that satisfies $X A=I$ is called a left inverse of A
If a left inverse exists we say that A is left-invertible
a: $m \times n \Rightarrow I: n \times n \Rightarrow X: n \times m$

Example

The matrix $A=\left[\begin{array}{cc}-3 & -4 \\ 4 & 6 \\ 1 & 1\end{array}\right]$
Has two different left inverses:

$$
B=\frac{1}{9}\left[\begin{array}{ccc}
-11 & -10 & 16 \\
7 & 8 & -11
\end{array}\right], \quad C=\frac{1}{2}\left[\begin{array}{ccc}
0 & -1 & 6 \\
0 & 1 & -4
\end{array}\right]
$$

Solving linear equations with a left inverse

Method
\square Suppose $A x=b$, and A has a left inverse C
\square Then $C b=C(A x)=(C A) x=I x=x$
So multiplying the right-hand side by a left inverse yields the solution

Left inverse of vector

Note

A non-zero column vector always has a left inverse.
Left inverse is not unique.

Example

- $\mathrm{a}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$
Three ways:
(1) $a^{-1}=\frac{1}{a_{i}} e_{i}^{T}$
(2) $a^{T} a=1 \Rightarrow \frac{a^{T}}{\|a\|^{2}}$
(3) $a^{-1} a=1$
- Matrix with orthonormal columns $A^{-1}=A^{T}$

Example

\square Row vector does not have left inverse

$$
A=\left[\begin{array}{lll}
{[1} & 0 & 3
\end{array}\right]
$$

Think about $\operatorname{rank}(\mathrm{BA}), \operatorname{rank}(\mathrm{I})$ with this theory: $\operatorname{rank}(B A) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$

Left inverse and column independence

Theorem

A matrix is left-invertible if and only if its columns are linearly independent

Proof

Left inverse and column independence

Theorem

\square If A has a left inverse C then the columns of A are linearly independent
\square We'll see later that the converse is also true, so:
A matrix is left-invertible if and only if its columns are linearly independent
Matrix generalization of
A number is invertible if and only if it is nonzero
From Previous Theorem
Left-invertible matrices are all tall or square
Wide matrix is not always left invertible
Tall or square matrices can be left invertible

Example

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
3 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & -1 \\
0 & 3 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 4 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 3
\end{array}\right],\left[\begin{array}{ccc}
1 & -2 & -1 \\
1 & 3 & 4 \\
-2 & 0 & 2 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
0 & 0 \\
1 & 2
\end{array}\right],\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Right Inverse

Right inverses

Definition
\square A matrix X that satisfies $A X=I$ is a right inverse of A
\square If a right inverse exists we say that A is right-invertible
$\square A$ is right-invertible if and only if A^{T} is left-invertible:

$$
A X=I \Rightarrow(A X)^{T}=I \Rightarrow X^{T} A^{T}=I
$$

\square so we conclude:
A is right invertible if and only if its rows are linearly independent
\square Right-invertible matrices are wide or square

Solving linear equations with a right inverse

Method

Suppose A has a right inverse B
Consider the (square or underdetermined) equations of $A x=b$
$\square x=B b$ is a solution:

$$
A x=A(B b)=(A B) b=I b=b
$$

\square So $A x=b$ has a solution for any b

Example

Same A, B, C in last example.
$\square C^{T}$ and B^{T} are both right inverses of A^{T}
\square Under-determined equations $A^{T} x=(1,2)$ has (different) solutions.

$$
B^{T}(1,2)=\left(\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right), \quad C^{T}(1,2)=\left(0, \frac{1}{2},-1\right)
$$

there are many other solutions as well

Conclusion: Left and Right Inverse

Linear equations and matrix inverse

Definition

Left-Invertible matrix: if X is a left inverse of A, then

$$
A x=b \Rightarrow x=X A x=X b
$$

There is at most one solution using X (if there is a solution, it must be equal to $X b$)
We must know in advance that there exists at least one solution
Why "at most"??
$X A=I$
$\left\{\begin{array}{l}-y_{1}+y_{2}=-4 \\ 0 y_{1}-y_{2}=3 \\ 2 y_{1}+y_{2}=0\end{array} \quad A=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1 \\ 2 & 1\end{array}\right] \quad X=\left[\begin{array}{lll}1 & 2 & 1 \\ 4 & 5 & 2\end{array}\right]\right.$

$$
\left[\begin{array}{rr|r}
-1 & 1 & -4 \\
0 & -1 & 3 \\
2 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

Linear equations and matrix inverse

Note

\square If the system of equations $\boldsymbol{A x}=\boldsymbol{b}$ is consistent, and if a matrix \boldsymbol{B} exists such that $\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}$, then the system of equations has a unique solution, namely \boldsymbol{x} $=B b$.
\square Right-inversible matrix: if X is a right inverse of A, then there is least one solution ($\mathrm{x}=\mathrm{Xb}$):

$$
x=X b \Rightarrow A x=A X b=b
$$

To pursue these ides further, suppose that again we want to solve a system of linear equations, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. Assume now that we have another matrix, \boldsymbol{B}, such that $\boldsymbol{A B}=\boldsymbol{I}$. Then we can write $\boldsymbol{A}(\boldsymbol{B} \boldsymbol{b})=(\boldsymbol{A B}) \boldsymbol{b}=\boldsymbol{I} \boldsymbol{b}=\boldsymbol{b}$; hence $\boldsymbol{B} \boldsymbol{b}$ solves the equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. This conclusion did not require an a priori assumption that a solution exist; we have produced a solution. The argument does not reveal whether $\boldsymbol{B} \boldsymbol{b}$ is the only solution. There may be others.
Invertible matrix: if A is invertible, then

$$
A x=b \Leftrightarrow x=A^{-1} b
$$

There is a unique solution

- System of linear equations $A x=b$:
- A right inverse of A, say $A B=I$. Then $B b$ is a solution, as is verified by nothing $A(B b)=(A B) b=I b=b$.
- Why don't need to check the consistency for using right inverse?
- A left inverse of A, say $\mathrm{CA}=I$, then we can only conclude that $C b$ is the sole candidate for a solution; however, it must be checked by substitution to determine whether, in fact, it is a solution

Square Matrix Inverse

Definition

For $A \in M_{n \times n}$, if there exists a matrix $B \in M_{n \times n}$ such that $A B=B A=I_{n}$, then:
$\square A$ is invertible (or nonsingular)
B is the inverse of A
The inverse of A is denoted by $B=A^{-1}$
A square matrix that does not have an inverse is called non-invertible (or singular)
For a square matrix left and right inverse are the same. Rows and columns are linear independent.

Theorem

The inverse of a matrix is unique

Method

\square Let A be a $n \times n$ matrix:
\square Adjoin the identity $n \times n$ matrix I_{n} to A to form the matrix $\left[A: I_{n}\right]$.
\square Compute the reduced echelon form of $\left[A: I_{n}\right]$.
\square If the reduced echelon form is of the type $\left[I_{n}: B\right]$, then B is the inverse of A.
\square If the reduced echelon form is not the type $\left[I_{n}: B\right]$, in that the first $n \times n$ submatrix is not I_{n} then A has no inverse.
$\left[\begin{array}{lll}A & \mid & I\end{array}\right]$ Gauss-Jordan elimination $\left[\begin{array}{lll}I & \mid & A^{-1}\end{array}\right]$

Important

An $n \times n$ matrix is invertible if and only if its reduced echelon form is I_{n}.

$$
\text { A is row equivalent to } I_{n}
$$

Inverse (Example)

Example

Find inverse of the following matrix using Gauss-Jordan Elimination:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & 4 \\
-1 & -3
\end{array}\right] \\
A X=I \Rightarrow\left[\begin{array}{cc}
1 & 4 \\
-1 & -3
\end{array}\right]\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
x_{11}+4 x_{21} & x_{12}+4 x_{22} \\
-x_{11}-3 x_{21} & -x_{12}-3 x_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

By equating corresponding entries we have:

$$
\left\{\begin{array}{c}
x_{11}+4 x_{21}=1 \\
-x_{11}-3 x_{21}=0 \\
x_{12}+4 x_{22}=0 \\
-x_{12}-3 x_{22}=1
\end{array}\right.
$$

This two system of linear equations have the same coefficient matrix, which is exactly the matrix A

Inverse (Example)

Rest of The Example

$$
\left.\begin{array}{l}
(1) \Rightarrow\left[\begin{array}{cc|c}
1 & 4 & 1 \\
-1 & -3 & 0
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
1 & 0 & \begin{array}{c}
\text { Using Gauss-Jordan Elimination on the } \\
\text { matrix } A \text { with the same row operations }
\end{array} \\
0 & 1 & 1
\end{array}\right] \Rightarrow x_{11}=-3, x_{21}=1 \\
(2)
\end{array}\right]\left[\begin{array}{cc|c}
1 & 4 & 0 \\
-1 & -3 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 1
\end{array}\right] \Rightarrow x_{12}=-4, x_{22}=1 .
$$

Thus $X=A^{-1}=\left[\begin{array}{cc}-3 & -4 \\ 1 & 1\end{array}\right]$

$$
\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
-1 & -3 & 0 & 1
\end{array}\right] \xrightarrow{\text { Guass-Jordan elimination }}\left[\begin{array}{cccc}
1 & 0 & \mid & -3 \\
0 & 1 & \mid & \left(\begin{array}{c}
-4 \\
1
\end{array}\right]
\end{array}\right.
$$

Definition

Properties (If A is invertible matrix, k is a positive integer and c is a scalar):
. A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$
$\square A^{k}$ is invertible and $\left(A^{k}\right)^{-1}=A^{-k}=\left(A^{-1}\right)^{k}$
$c A$ is invertible if $c \neq 0$ and $(c A)^{-1}=\frac{1}{c} A^{-1}$

- A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Theorem

If A and B are invertible matrices of order n, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$

$$
\left(A_{1} A_{2} A_{3} \cdots A_{n}\right)^{-1}=A_{n}^{-1} \cdots A_{3}^{-1} A_{2}^{-1} A_{1}^{-1}
$$

Theorem

Let $A x=b$ be a system of n linear equations in n variable. If A^{-1} exists, the solution is unique and is given by $\mathrm{x}=A^{-1} b$

Theorem

The solution set K of any system $A x=b$ of m linear in n unknows is, s is a particular solution:

$$
K=s+\operatorname{Null}\left(T_{A}\right)
$$

Theorem

Let $A x=b$ be a system of n linear equations in n variable.
The system has exactly one solution $A^{-1} b$ if and only if A is invertible.

Definition

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is not invertible

Note

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] . \operatorname{det} A=a d-b c$.
2×2 matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

Elementary Matrices

Definition

Each Elementary Matrix is E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

Example

Find the inverse of $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right]$

Solving square systems of linear equations

Method

\square Suppose A is invertible

- For any $b, A x=b$ has the unique solution

$$
x=A^{-1} b
$$

Matrix generalization of simple scalar equation $a x=b$ having solution $x=\left(\frac{1}{a}\right) b$ (for $a \neq 0$)
Simple-looking formula $x=A^{-1} b$ is basis for many applications

Invertible (Nonsingular) matrices

Conclusion

The following are equivalent for a square matrix A :
$\square A$ is invertible
\square Columns of A are linearly independent
\square Rows of A are linearly independent
$\square A$ has a left inverse
$\square A$ has a right inverse

$$
\operatorname{row} \operatorname{rank}(A)=\operatorname{col} \operatorname{rank}(A)=n
$$

If any of these hold, all others do

Invertible matrices

Examples

$\square I^{-1}=I$
\square If Q is orthogonal, i.e., square with $Q^{T} Q=I$, then $Q^{-1}=Q^{T}$
$\square 2 \times 2$ matrix A is invertible if and only if $A_{11} A_{22} \neq A_{12} A_{21}$

$$
A^{-1}=\frac{1}{A_{11} A_{22}-A_{12} A_{21}}\left[\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right]
$$

- You need to know this formula
- There are similar but much more complicated formulas for larger matrices (and no, you do not need to know them)
\square Consider matrix $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 2 & 2 \\ -3 & -4 & -4\end{array}\right]$
$>A$ is invertible, with inverse:

$$
A^{-1}=\frac{1}{30}\left[\begin{array}{ccc}
0 & -20 & -10 \\
-6 & 5 & -2 \\
6 & 10 & 2
\end{array}\right]
$$

$>$ Verified by checking $A A^{-1}=I$ (or $A^{-1} A=I$)
$>$ We'll soon see how to compute the inverse

Properties

- $(A B)^{-1}=B^{-1} A^{-1}$

If A is nonsingular, then A^{T} is nonsingular

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}\left(\text { sometimes denoted } A^{-T}\right)
$$

\square Negative matrix powers: $\left(A^{-1}\right)^{k}$ is denoted by A^{-k}
\square With $A^{0}=I$, Identity $A^{k} A^{l}=A^{k+l}$ holds for any integers k, l

Triangular matrices

Theorem

Lower Triangular L with non-zero diagonal entries is invertible

Proof??

Theorem

Upper Triangular R with non-zero diagonal entries is invertible

Proof??

Why Matrix of Change of Basis is invertible?

