

Matrix Inverse

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

Left Inverse

Left Inverse

Definition

□ A number x that satisfies xa = 1 is called the inverse of a □ Inverse (i.e., $\frac{1}{a}$) exists if and only if $a \neq 0$, and is unique □ A matrix X that satisfies XA = I is called a left inverse of A □ If a left inverse exists we say that A is left-invertible □ A: $m \times n \implies l: n \times n \implies X: n \times m$

Example

The matrix
$$A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}$$

Has two different left inverses:
 $B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}$

$$C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix}$$

Solving linear equations with a left inverse

Method

□ Suppose Ax = b, and A has a left inverse C□ Then Cb = C(Ax) = (CA)x = Ix = x□ So multiplying the right-hand side by a left inverse yields the solution

Left inverse of vector

Note

A non-zero column vector always has a left inverse.
Left inverse is not unique.

Example Type equation here. $\Box = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \quad \text{Three ways: } (1)a^{-1} = \frac{1}{a_i}e_i^T \text{ where } a_i \neq 0 \quad (2)a^Ta = 1 \Rightarrow \frac{a^T}{||a||^2}$ $\Box \quad \text{Matrix with orthonormal columns } A^{-1} = A^T$

Example

Row vector does not have left inverse

 $A = \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$ Think about rank(BA), rank(I) with this theory: $rank(BA) \le min(rank(A), rank(B))$

Left inverse and column independence

Theorem

A matrix is left-invertible if and only if its columns are linearly independent

Proof

Theorem

 \Box If A has a left inverse C then the columns of A are linearly independent

 $\hfill\square$ We'll see later that the converse is also true, so:

A matrix is left-invertible if and only if its columns are linearly independent Matrix generalization of

A number is invertible if and only if it is nonzero

From Previous Theorem

Left-invertible matrices are all tall or square

□ Wide matrix is not always left invertible

□ Tall or square matrices can be left invertible

Example

Right Inverse

Theorem

A matrix is right-invertible if and only if its rows are linearly independent

Proof

Definition

□ A matrix X that satisfies AX = I is a right inverse of A □ If a right inverse exists we say that A is right-invertible □ A is right-invertible if and only if A^T is left-invertible: $AX = I \implies (AX)^T = I \implies X^T A^T = I$

so we conclude:

A is right invertible if and only if its rows are linearly independent

Right-invertible matrices are wide or square

Solving linear equations with a right inverse

Method

Suppose A has a right inverse B
Consider the (square or underdetermined) equations of Ax = b
x = Bb is a solution:

$$Ax = A(Bb) = (AB)b = Ib = b$$

 \Box So Ax = b has a solution for any b

Example

□ Same *A*, *B*, *C* in last example. □ *C^T* and *B^T* are both right inverses of *A^T* □ Under-determined equations $A^T x = (1, 2)$ has (different) solutions. $B^T(1, 2) = (\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}), \quad C^T(1, 2) = (0, \frac{1}{2}, -1)$ there are many other solutions as well

Conclusion: Left and Right Inverse

Definition **Left-Invertible matrix:** if X is a left inverse of A, then $Ax = b \Longrightarrow x = XAx = Xb$ There is at most one solution using X (if there is a solution, it must be equal to Xb) We must know in advance that there exists at least one solution Why "at most"??

XA = I

$$\begin{cases} -y_1 + y_2 = -4 \\ 0y_1 - y_2 = 3 \\ 2y_1 + y_2 = 0 \end{cases} \qquad A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 5 & 2 \end{bmatrix} \qquad \begin{bmatrix} -1 & 1 & | & -4 \\ 0 & -1 & | & 3 \\ 2 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & -3 \\ 0 & 0 & | & 1 \end{bmatrix}$$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Note

If the system of equations Ax = b is consistent, and if a matrix B exists such that BA = I, then the system of equations has a unique solution, namely x = Bb.

Right-inversible matrix: if X is a right inverse of A, then there is <u>at least one</u> solution (x=Xb):

$$x = Xb \implies Ax = AXb = b$$

□ To pursue these ides further, suppose that again we want to solve a system of linear equations, Ax = b. Assume now that we have another matrix, B, such that AB = I. Then we can write A(Bb) = (AB)b = Ib = b; hence Bb solves the equations Ax = b. This conclusion did not require an a priori assumption that a solution exist; we have produced a solution. The argument does not reveal whether Bb is the only solution. There may be others.

Invertible matrix: if A is invertible, then

$$Ax = b \iff x = A^{-1}b$$

There is a unique solution

- System of linear equations Ax = b:
 - A right inverse of A, say AB = I. Then Bb is a solution, as is verified by nothing A(Bb) = (AB)b = Ib = b.
 - Why don't need to check the consistency for using right inverse?
 - A left inverse of A, say CA = I, then we can only conclude that Cb is the sole candidate for a solution; however, it must be checked by substitution to determine whether, in fact, it is a solution

Square Matrix Inverse

Inverse

Definition

For $A \in M_{n \times n}$, if there exists a matrix $B \in M_{n \times n}$ such that $AB = BA = I_n$, then:

- □ A is invertible (or nonsingular)
- B is the inverse of A
- \Box The inverse of A is denoted by $B = A^{-1}$

A square matrix that does not have an inverse is called non-invertible (or singular)

For a square matrix left and right inverse are the same. Rows and columns are linear independent.

Theorem

For a square matrix, the right and left inverse are the same

Theorem

The inverse of a square matrix is unique.

CE282: Linear Algebra

Square matrix inverse and column independence

Theorem

A square matrix is invertible if and only if its columns are linearly independent

Proof

Method

- \Box Let A be a $n \times n$ matrix:
 - \Box Adjoin the identity $n \times n$ matrix I_n to A to form the matrix $[A : I_n]$.
 - \Box Compute the reduced echelon form of $[A:I_n]$.
- \Box If the reduced echelon form is of the type $[I_n : B]$, then B is the inverse of A.
- □ If the reduced echelon form is not the type $[I_n : B]$, in that the first $n \times n$ submatrix is not I_n then A has no inverse.

 $[A \mid I]$ Gauss–Jordan elimination $[I \mid A^{-1}]$

Important

An $n \times n$ matrix is invertible if and only if its reduced echelon form is I_n .

A is row equivalent to I_n

CE282: Linear Algebra

Inverse (Example)

Example

Find inverse of the following matrix using Gauss-Jordan Elimination:

$$A = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}$$
$$AX = I \implies \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} x_{11} + 4x_{21} & x_{12} + 4x_{22} \\ -x_{11} - 3x_{21} & -x_{12} - 3x_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

By equating corresponding entries we have:

$$\begin{pmatrix} x_{11} + 4x_{21} = 1 \\ -x_{11} - 3x_{21} = 0 \\ x_{12} + 4x_{22} = 0 \\ -x_{12} - 3x_{22} = 1 \end{pmatrix}$$
(1) This two system of linear equations have the same coefficient matrix, which is exactly the matrix A

Inverse (Example)

Rest of The Example

Definition

Properties (If A is invertible matrix, k is a positive integer and c is a scalar): A^{-1} is invertible and $(A^{-1})^{-1} = A$ A^{k} is invertible and $(A^{k})^{-1} = A^{-k} = (A^{-1})^{k}$ CA is invertible if $c \neq 0$ and $(cA)^{-1} = \frac{1}{c}A^{-1}$ A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$

Theorem

If A and B are invertible matrices of order n, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

$$(A_1 A_2 A_3 \cdots A_n)^{-1} = A_n^{-1} \cdots A_3^{-1} A_2^{-1} A_1^{-1}$$

Theorem

The solution set K of any system Ax=b of m linear in n unknows is, s is a particular solution:

 $K = s + Null(T_A)$

Theorem (Using above Theorem)

Let Ax = b be a system of n linear equations in n variable. The system has exactly one solution $A^{-1}b$ if and only if A is invertible.

Invertible Matrix

Definition

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
If $ad - bc = 0$, then A is not invertible

If ad - bc = 0, then A is not invertible

Note

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. det $A = ad - bc$.
2 × 2 matrix A is invertible if and only if det $A \neq 0$.

Definition

Each Elementary Matrix is E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

Example

Find the inverse of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

Solving square systems of linear equations

Method

□ Suppose *A* is invertible □ For any *b*, Ax = b has the unique solution

$$x = A^{-1}b$$

□ Matrix generalization of simple scalar equation ax = b having solution $x = \left(\frac{1}{a}\right)b$ (for $a \neq 0$) □ Simple-looking formula $x = A^{-1}b$ is basis for many applications

Invertible (Nonsingular) matrices

Conclusion

The following are equivalent for a square matrix A:

A is invertible

 \Box Columns of A are linearly independent

 \Box Rows of A are linearly independent

 $\Box A$ has a left inverse

 $\Box A$ has a right inverse

row rank(A) = col rank(A) = n

If any of these hold, all others do

Invertible matrices

Examples

$\Box I^{-1} = I$ $\Box If Q \text{ is orthogonal, i.e. , square with } Q^T Q = I, \text{ then } Q^{-1} = Q^T$ $\Box 2 \times 2 \text{ matrix } A \text{ is invertible if and only if } A_{11}A_{22} \neq A_{12}A_{21}$ $A^{-1} = \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$

- You need to know this formula
- There are similar but much more complicated formulas for larger matrices (and no, you do not need to know them)

Consider matrix
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 2 \\ -3 & -4 & -4 \end{bmatrix}$$

 \succ A is invertible, with inverse:

$$A^{-1} = \frac{1}{30} \begin{bmatrix} 0 & -20 & -10 \\ -6 & 5 & -2 \\ 6 & 10 & 2 \end{bmatrix}$$

- > Verified by checking $AA^{-1} = I$ (or $A^{-1}A = I$)
- > We'll soon see how to compute the inverse

Properties

□ (AB)⁻¹ = B⁻¹A⁻¹
□ If A is nonsingular, then A^T is nonsingular
 (A^T)⁻¹ = (A⁻¹)^T (sometimes denoted A^{-T})
□ Negative matrix powers: (A⁻¹)^k is denoted by A^{-k}
□ With A⁰ = I, Identity A^kA^l = A^{k+l} holds for any integers k, l

Triangular matrices

Theorem
Lower Triangular L with non-zero diagonal entries is invertible
Proof??
Theorem
Upper Triangular R with non-zero diagonal entries is invertible
Proof??

Why Matrix of Change of Basis is invertible?

Because the column and rows of it is the basis so they are linear independent and invertible

Theorem

Given a square matrix M and its inverse M^{-1} , then M and M^{-1} have the same rank.

Theorem

If A is $m \times n$ and B is an $n \times n$ invertible matrix, then rank(AB) = rank(A).

Solution: $rank(AB) \leq rank(A), [*] rank(AB) \leq rank(B)$ $B^{-1}(BA) = A \Rightarrow rank(B^{-1}(BA)) = rank(A) \leq rank(B^{-1})$ $A^{-1}(AB) = B \Rightarrow rank(A^{-1}(AB)) = rank(B) \leq rank(AB)$ Therefore: $rank(A) \leq rank(AB)$ [**] so using [*],[**] then rank(A)=rank(AB)

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following are equivalent.

- □ 1. A is an invertible matrix.
- \Box 2. A is row equivalent to the n \times n identity matrix.
- □ 3. A has n pivot positions.
- \Box 4. The equation Ax = 0 has only the trivial solution.
- **5**. The columns of A form a linearly independent set.
- **G** 6. The linear transformation $x \rightarrow Ax$ is one-to-one.
- □ 7. The equation Ax = b has at least one solution for each $b \in \mathbb{R}^n$.
- **a** 8. The columns of A span \mathbb{R}^n .
- **9**. The linear transformation $x \rightarrow Ax$ maps \mathbb{R}^n onto \mathbb{R}^n .
- **D** 10. There is an n \times n matrix C such that CA = I.
- \Box 11. There is an n \times n matrix D such that AD = I.
- **D** 12. A^T is an invertible matrix.

